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Abstract. A solution for the problem of unsupervised recognition in the
conditions of a priori indefinite number of object classes in radar images is
presented. The designed algorithm performs image clustering to divide image
objects into classes. The region of interest is can be chosen by user and then
probabilistic filtering is applied to recognize the objects of the predetermined

class on the entire image. The algorithm is operated on the multichannel data
and shows stable recognition results.
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1 Introduction

The airborne and spaceborne remote sensing (RS) systems are widely used for
ecological monitoring of environment, mapping and extraordinary situation
prevention. The analysis of aerospace images allow to detect the waters pollutions
such as oil spills, monitor the borders of rivers and lakes, detect ice obstruction,
evaluate water resources, soil state and erosion and so on [1]. Aerospace remote
sensing of the Earth surface is performed as by radar systems (including polarimetric
radars) as in optical an IR bands [2]. Remote sensing data often are represented by
multichannel images where the image brightness corresponds to the amplitude of the
signal reflected from the sensed surface [3].

For example, the radar image shown Fig. 1 contains many spatially distributed
objects whose number a priori is unknown. Object separation and contouring,
detection of the similar objects and their classification (object clustering) using the
level of reflected signal intensity is one of the goals of the processing of such images.
The noise contained in the images is caused by equipment and reflected signal
fluctuations, and significantly complicates the image analysis and classification. An
automatic image classification requires to determine the number of the classes of the
objects that can be distinguished in the analyzed image. The statistical characteristics
of the separable objects can be determined for their following recognition in the
analyzed and similar images.

The automatic classification can be performed analyzing the local histograms
calculated on the data within the sliding on the entire image window (see Fig. 1). The
window size must be matched to the RS system resolution. Since in the separated
image fragment several objects may be presented, the resulted histogram may be of

© L. Sénchez, O. Pogrebnyak and E. Rubio (Eds.)
Industrial Informatics
Research in Computing Science 31, 2007, pp. 115-124



116 A. Popov, O. Pogrebnyak and A. Brashevan

the multimodal character (see Fig. 2). Analyzing the histogram multimodal content
one can determine the number of the objects in the separated image fragment.

Fig. 1. Fragment of radar image of sea cost (negative).

Fig. 2. Histogram of entire image in Fig. 1 (gray) énd local window histogram (black).

2 Multimodal Statistical Model

One of the methods of multimodal distribution descriptions is the use of the normal
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distribution mixtures of the form f(x)= Z Pr - @r(x)= z Pk 5 [4],
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where M is a number of the normal kernels ¢y (x) ; my , oy are the parameters of k-
th normal distribution ¢ (x); p; are the weight coefficients satisfying the condition

[fx)dx=1.
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The procedure of finding parameters M, my, o}, p; is based on the

minimization of the mean square error of the approximation. Since the true
distribution density function is a priori unknown, the number of kernels M necessary
to build model, the distribution parameters m;, o}, and the weighting coefficients

Py are also unknown.

In reference [5] a probabilistic approach is proposed to find the estimates of the
normalizing coefficients p; , which consists of the determining of the probability of
the appearance of each approximating kernel ¢, (x) that can be evaluated on the

distribution histogram. However, the implementation of such an approach requires the
number of modes in the distribution A(x) to be determined and the sample

distribution to be separated onto the contented mixtures.
The determination of the number of modes for the analytical distributions is not a
problem because one can find this number solving the following equations:

oh(x) _ 8%h(x)
Ox ’ 6x2
Unfortunately, the non-smooth character of the histograms k(x) that contained the

source data for the approximation does not allow the use of the numerical
differentiation methods directly for A(x) [6].

>0.

Even if the number of modes in the distribution is known, its parameters my, o,
k=1..M of the normal kernels ¢;(x) of the distribution mixture

M
f(x)= Z Pr@r(x) are unknown. These parameters can be evaluated only in case
k=1

when the source sample h(x) can be divided by the data composed by each
distribution mode ¢y (x) that is equivalent to perform the data clustering in the terms

of the recognition theory [7]. This way the sample estimates would contain a
significant error.

3 Multimodal Statistical Model Design

The design of the data multimodal statistical model can be performed in several
stages. At the first stage it is necessary to determine the number of components M in
the distribution mixture. In the presence of several modes in the histogram h(x) of

the experimental data, for example, their quantity can be determined by calculating
the crosscorrelation between the histogram and an etalon distribution. The
crosscorrelation function is used for the reasons that, first, the correlation coefficient
characterizes the similarity of one function to another, and second, the change in the
parameters of the etalon function allows estimation of the histogram parameters.

If the normal distribution is adopted as an etalon function then the crosscorrelation
function can be determined as
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X max
Rm)= [h(x)-@(x,m)dx . 1)
X min
When the expectation m of the normal distribution ¢(x,m) varies from xp;, to

Xmax at fixed variance o2 value, the maximums of the correlation function (1)

correspond to the positions of the modes in the distribution histogram.
The analogous “scanning” can also be performed for the variance of the normal
distribution. To this end, the crosscorrelation function at the fixed expectation m of

the normal distribution is calculated as follows:
X max

R(c) = jh(x)~¢(x,a)dx )

X min
The crosscorrelation function (2) is less sensitive to the variance changes because
the analyzed distribution has several modes. It is supposed that the most accurate
results can be found calculating a bidimensional correlation function. Fig. 3 shows an

example of such a function.
X max

R(m,o) = jh(x)-(p(x,m,d)dx 3)

X min
To determine the number of distribution modes it is necessary to determine the
number of maximums in the bidimensional correlation functions. This problem can be
solved differentiating numerically the function R(m,o) and solving the following

equations:
2
OR(m,o) . OR(m,0o) -0, 0°R(m,o) 50.

4
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Fig. 3. Two-dimensional cross correlation function (3).

At the second stage the statistical estimates of the parameters my, o} are

determined for each distribution mode k=1...M . Such a possibility gives a
sequential view of the function R(m,o) in the points that it satisfy to the conditions

(4) and calculating the corresponding estimates of the values my, oy .
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The third stage consists of finding the weighting coefficients for each distribution
mixture components p; , k =1...M . The interpretation of the weighting coefficients
Py as probabilities of the data belong to the histogram clusters ¢, (x) allows
building the algorithm for the coefficients p, determination using the method of the
maximum a posteriori probability. For each data sample element x; one can calculate
the probability it drops in the class ¢, (x), using the Bayes formula [7]:

0, (x)= 263 )

Z(/’j(xi)
j=1

As the parameters of the functions ¢y (x) the previously found estimates of my,
o} are used. Then, the maximal value of a posteriori probability Oy (x,-), k=1...M
is found. The number k determines the number of the cluster ¢ (x) .

Counting the number of the elements n; each cluster has the probability estimates
that can be determined as follows:
n

=k
Pk N

where N is a total number of the sample elements.

Clearly, such an approach gives approximated estimates of the probabilities py
because a priori it is assumed the equiprobable belonging of the element x; to the
class ¢, (x). Besides, the considered approach automatically satisfies to the

M
condition )_p; =1.
k=1
The estimates of the parameters of the approximating multimodal distribution
found according to the described method needs in a more accurate update. To this
end, numerical optimization procedures [6] can be used. The cluster parameter
estimates my, o, p; can be used as varied parameters in these procedures.

4 RESULTS

4.1 Simulation results on multimodal statistical modeling

To verify the elaborated method, samples were generated having random values of
normal distribution with parameters N(10, 2) u N(0.0, 1.5). Then, the samples were
mixed in proportion 1/8.

At the stage of the correlation analysis, a two-dimensional correlation function
R(m,o) was obtained (see Fig. 3). The analysis of this function detected two clusters

with the parameters N(10.02, 2.49) and N(0.26, 1.93) (see Fig. 4). A small bias_ in fhe
estimates of the normal distributions is caused by mutual influence of the distribution
modes at data correlation analysis.



120  A. Popov, O. Pogrebnyak and A. Brashevan

/
[\
NN

Fig. 4. Results of cluster analysis of bidimensional crosscorrelation function in Fig. 3.

To estimate the weighting coefficients py, the probabilities of classification for

each element were calculated according to the method of the maximum 9f a posterio-ri
probability (5). In such a manner, the statistical model was updated as it is shown in
Fig. 5: p1 =0.92, p2 = 0.08.

Fig. 5. Cluster probability estimation results.

The resulting values N(10.02, 2.49), p1 = 0.877 and N(0.26, 1.93), p2 = 0.123 were
obtained applying a numerical optimization procedure. The shape of the
approximating function is shown in Fig. 6.

Fig. 6. Statistical model optimization results.

4.2 Results on application of automatic classification algorithm to real data

The proposed classification algorithm based on polynormal distribution was
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applied to different images. For example, the result of the automatic classification the
radar image in Fig. 1 is shown in Fig. 7. Here, the algorithm detected 16 different
clusters. Each of them is represented in Fig. 7 by its intensity. Fig. 7 was obtained by
application of the probabilistic filters [8], each filter was adjusted properly to its
cluster.

The presence of the noise in the original image and the blurred object edges result
in erroneous classification of the edges of the homogeneous areas, which may be
classified as separate classes. Image prefiltering using low-pass smoothing filters [9]
results in the reduction of the number of the separable object classes to 6 (see Fig. 8).
It means that objects having different electrophysical nature (for instance, terrain and
sea surface) may be classified as belonged to the same class. Therefore, the image
preprocessing for subsequent classification needs in detail preserving filters [10] that
do not smooth object edges.

The automatic classification of the images of better quality (sharper and less noisy,
as, for example, image shown in Fig. 9) produces better results. In the image in Fig. 9
it was found 7 clusters shown in Fig. 10 by the areas of different intensity. The
analysis of the classification results shows that in this case the areas of different
electrophysical parameters practically are not unified.

5 Conclusions

The presented automatic image classification algorithm can be used to solve the
problem of radar image classification in the conditions of a priori ambiguity about the
number of the object classes and their statistical properties. The proposed
classification algorithm permits to detect the distinguished object classes. The
mathematical background for the proposed radar image classification algorithm is the
image statistical model that assumes the polynormal distribution of the data. To
approximate well the image histogram, it was solved the problem of the determination
of the number of the kernels that are the centers of the histogram clusters. The
statistical model updated recursively calculatess  more accurate statistical
characteristics of the object classes. The additive components of the statistical model
can serve as a description of the classes of the objects contained in the radar image
and can be used for their recognition.

The application of the proposed algorithm to real radar images has demonstrated the
stability of the proposed automatic classification technique. However, the number of
the detected classes depends significantly on the quality of the original image and
used preprocessing methods.
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Fig. 8. Result of clustering radar image in Fig. 1 after filtration.
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